Thoughts on a Possible 64-bit DOS OS

kraileth

January 23, 2026

1 A Little Rant (to get in the
Mood)

I’'m a die-hard Unix lover. But to keep yourself
honest, you must not refrain from relentlessly
criticising what you love. So let me start with
a little rant that’s very much opinionated and
totally does not aim at being a balanced anal-
ysis.

The very idea of Unix was that of simplic-
ity (over the complexity of Multics). Yet, if
we look at a typical modern Unix-like, we see
some of the most complex beasts that are out
there. Some are a bit leaner (like NetBSD),
others are so ridiculously oversized (the wider
GNU/Linux ecosystem) and as much of a self-
parody that people had to build an editor on
top of a Web browser engine (Atom) to beat
the level of absurdity. Why is this? There are
two reasons for it:

1. Historic baggage: Unix is weight down
by 504 years worth of careful evolution
driven by the desire to not break things
and retain compatibility. For example,
physical terminals died out so long ago
that two entire social generations have
been born after their demise. And here
I am today, typing this text on my key-
board, causing signals which the event in-
put driver of X11 receives — only to feed
the data to a terminal emulator applica-
tion! All that just to pretend everything is
still like it was in 1970, when Thompson
and Ritchie bootstrapped Unix on Bell’s
PDP-7 minicomputer.

Another example? How about us using
filesystems that still insist on ‘ending on
a cylinder boundary’ even though most of
our storage media don’t spin anymore (I
hope!) and have no platters to begin with?

In far too many ways we’re walled in by
such anachronisms.

2. General purpose aspiration: While the
power of Unix comes from its components
adhering to the idea of ‘doing one thing
and doing it well’, the trend shifted to at-
tempting to do everything — and doing a
lousy job at that (I don’t even have to
name the biggest offender here, do 17).

And as if trying to do absolutely every-
thing wasn’t bad enough, people seem to
enjoy solving (relatively) simple problems
with terribly complex means. So much so
that eventually you need an abstraction
layer for the abstraction layer, because it’s
too hard to use! A dangerous mindset has
been running wild for quite a while now:
‘Fix that stupid piece of software? Nah,
let’s stuff it into a “pod” and build an
orchestration engine that can keep n in-
stances of it running all the time, then it’s
no problem if it crashes once a week.

Of course the future looks bright. How
couldn’t it when so many people choose to de-
scribe every problem to Claude rather than
typing man $SOMETHING? Need I say more?
Probably not — either you understand my exas-
peration by now or we simply disagree on the
matter.

2 The DOS OS Family

So what’s the solution to this problem? Keep
reinventing the gid 0 over and over again? Yes
and no. Not necessarily all the time — never
reaching production quality with anything is
not exactly helpful. But there’s a lot of value
in all kinds of experimentation and just trying
out things. To this day, people like to study

Plan 9 for example, even though probably no-
body expects it to ever “succeed” on the mar-
ket. Which is totally fine for a research OS!

Recently, over on r/kerneldevelopment, a
project idea was posted that basically boils
down to a 64-bit DOS system for modern hard-
ware. I like both the idea and the spirit (‘let’s
do it for fun and see what happens’).

The DOS family of operating systems is ac-
tually a pretty fascinating one, and while MS-
DOS is by far the best known one, there are
others that are vastly more interesting. It all
began with the 8-bit microcomputer OS CP/M,
first released in 1974 by Digital Research. It’s
major innovation was that it splits the core
OS into two components, the BIOS (Basic In-
put/Output System) and the BDOS (Basic
Disk Operating System). While the former was
hardware-dependent, the latter used routines
provided by the BIOS. This makes the system
much more portable since only the BIOS por-
tion needed to be adapted to various platforms
and the BDOS would just work.

How influential this model has become is ob-
vious: in 1981, for its PC architecture, IBM
introduced a system BIOS or ROM BIOS on
which operating systems could rely. IBM had
tricked Digital Research, and the PC was over-
whelmingly sold with DOS—at the time a
cheap CP/M rip-off. Due to the success of
the PC architecture, DOS eventually displaced
CP/M.

There are various important and well-known
innovations that originate within MS-DOS like
the hierarchical FAT filesystem that allowed for
subdirectories (CP/M had a flat filesystem).
Some of the features of CP/M that didn’t make
it into DOS or from other DOS systems beside
MS-DOS are not widely known today, though.
For example, while CP/M didn’t support sub-
directories, it came with a facility known as
user areas which allowed for organizing files.
Then there was MP/M, first released in 1979,
which was a multi-user and multi-tasking vari-
ant of CP/M. In 1982, Digital Research re-
leased CCP/M, a single-user multi-tasking sys-
tem that introduced virtual screens.

The MS-DOS line of operating systems
evolved into a program starter for Windows
9.x and eventually into a legacy layer within
Windows NT. Microsoft were a major Unix

vendor during the DOS era and had no inter-
est in adding advanced features to MS-DOS
so it wouldn’t compete with Xenix. The same
was not true for Digital Research, who came
up with amazing innovations time and time
again. Several underhanded manoeuvrers by
Microsoft as well as a couple of bad decisions
on Digital Research’s part prevented their OS
family ever taking the lead again. The last off-
spring of their line, REAL/32, was discontinued
in the late 2000s.

So what kind of value could a DOS64 oper-
ating system actually provide other than being
highly educational? A lot, surprisingly. At its
core it would probably be a platform used by
retro enthusiasts and I wouldn’t be surprised if
people ported games to it or wrote new ones.
If network functionality was to be added, it
would make a fun server OS for the BBS scene.
And it might be a great exercise in minimal-
ism for people who’d like to explore the how
far they can take simple.

3 Platform and Toolchain
Considerations

Let’s imagine DOS/64 (or, if that name sounds
too unimaginative, how about “Exhumed OS”,
which, tongue-in-cheek, could be abbreviated
“OS Ex”7)!

The suggestion was to write it in C, follow-
ing the modern C23 standard. If self-hosting
is clearly a non-goal, that is great. If we want
to consider self-hosting eventually, though, C
standards should be re-considered. TCC sup-
ports ANSI C and ‘much of the C99 standard’.
PCC is C99. SCC (a full toolchain including
cc, cpp, make, as, 1d, ar and more) also targets
C99. Finally CPROC is C11 compiler which
already supports some C23 features.

Another crucial decision to make is the plat-
form. Will it be targeting amd6/ only (as
that’s the HW people usually have to play
with) or are arm6j and riscv6j also a goal?
If the former, the project could use the EFI for
its boot loader and avoid the pitfalls of uboot
related stuff.

In general, beginning a new OS from scratch
offers a unique chance: starting legacy-free
without worrying about all the old cruft that
others have to deal with. Obviously to jus-

tify a name like “DOS/64”, the system would
have to be recognizable as a DOS. Of course
this is mostly about the user-facing portion of
the OS and the internals can be (and proba-
bly should be) vastly different from how 16-bit
DOS or even FreeDOS works. A decision needs
to be made if the system should be a DOS-like
(which would remain pretty close to what DOS
felt like) or DOS-inspired (which could deviate
further from its original role model). Both op-
tions have their own appeal: the former would
be ‘DOS, but 64-bit’, while the latter would ex-
plore what DOS might have evolved to. I think
option 2 would be more interesting as it can de-
velop organically while the other one necessar-
ily would feel like an anachronism which only
caters to the retro feeling.

What makes DOS recognizable are things
like the COMMAND.COM command interpreter
and the 8.3 filename schema. I think it makes
sense to implement rw support for FAT32 and
stick with that rather than trying to design a
new FS. If we want more modern features, it
might make sense to consider a layered storage
framework like FreeBSD’s GEOM (which is the
most flexible solution I know of, basically stor-
age done right). GEOM offers various classes;
instances of them are consumers of underly-
ing providers, transform them and become a
provider themselves.

For example the gmirror class consumes two
storage providers (partitions, physical disks,
memdisks, other geom providers) and acts as
a new provider for a RAID1-type storage. You
can have gjournal consume it and become an-
other provider. If you create a FAT32 FS on
top of the latter, you have a journalled, soft-
raid FAT32 that you could pass to a DOS VM
and the OS would be perfectly happy to work
with it! Seriously: how cool is that?

You also use classes for things like encryp-
tion or even remote storage (geom gate) and
there also was a GEOM-based volume man-
ager (gvinum). 1 think taking some inspira-
tion from that and solve some problems at dif-
ferent layers than the actual filesystem might
make sense — sticking with trusty and compat-
ible FAT32, but giving people who want some
more the option to implement components for
a storage stack.

4 Storage Devices and Access

Bringing DOS-style handling of drives into the
modern age is a bit of a challenge. Back in the
day you either had fixed disks or drives with
ejectable media — but devices couldn’t connect
or vanish during runtime. Thanks to USB,
they now can. Also DOS used to read and
write filesystems hot. That was terrible but
‘good enough’ practice even then. But purely
synchronous writes are an anachronism, and if
we want to buffer writes, we need to lock and
release filesystems. Unix’ concept of mounting
is not idiomatic to DOS and doesn’t feel like a
good candidate to bring over for multiple rea-
sons:

e in DOS, we organize files in several device-
based trees, the root of which is a drive
letter. There is no global hierarchy where
an additional filesystem can be mounted
to just about any node.

e we don’t have a device subtree

(/dev/$something), either.

Traditionally, DOS uses special names to re-
fer to devices like CON for the console. This is
extremely ugly and can bite people (to this day
you cannot create a file named CON, COM1, LPT3
and so on in Windows!). It might be better
for the kernel to keep a list of possible device
names in a special namespace which separates
them from filenames. Since USB supports hubs
and can become rather complex, let’s for ex-
ample reserve 10 USB device nodes: USBI1 ..
USB10. Most commands never need to access
those. For those that do, we can use a special
syntax of starting with a backslash (to denote
an absolute path) but without a drive letter
(thus pointing to the device list provided by
the kernel). So for example, ‘USB1” would be
a valid filename without an extension in the
local directory that can be accessed with a rel-
ative path (USB1) or with an absolute path
(e.g. C:\SOMEWHERE\MYFILES\USB1). Refer-
ring to the device ‘USB1’ would be done like
this: \USB1.

Running DEVICE /R returns all the re-
served names in the device tree. DEVICE /C
\USB11 would create an additional device node.
DEVICE /D \USB10 would error out, as device

names need to be sequential and USB10 cannot
be deleted when USB11 exists. Running just
DEVICE without any parameters displays which
ones are actually connected to a device and the
device info if available (like ‘Acme 16GB USB
thumb drive’) which the kernel might have ex-
posed as USB1. If the USB drive contains two
partitions with usable filesystems, they might
be exposed as USB1 and USB2.

Knowing that the storage device we want to
access is called USB1, we could then issue the
command ASSIGN \USB1 E:. This would lock
the filesystem and make it available to common
programs under the drive letter E. When the
user is done with it, he needs to issue UNASSIGN
E: to release it. The command blocks until
any cache buffers are flushed, and then reports
that the drive is safe to remove (unless other
partitions of the same device are still in use?).

A variant of the device naming would be that
the kernel doesn’t simply pick the next free
name for every partition but does something
slightly more sophisticated. Here’s the catch
with the simple schema proposed so far: Imag-
ine an unpartitioned USB stick with a FAT32
FS getting attached to the system. The ker-
nel registers \USBI1 for it. Then a second one
just like it is attached. It gets registered as
\USB2. New we remove the first one; \USB1
is now a reserved (unattached) node. When we
now connect another USB stick, one that has
two FAT32 partitions, the kernel would expose
the first one as \USB1 and the second one as
\USB3. Them not being sequential could be
confusing.

To solve this, we can either have the kernel
find two continuous ones (thus ignoring \USB1
in this case), or we could solve the problem by
thinking of the device node as the whole de-
vice and use a name + extension notation to
refer to the partitions — \USB1.1 and \USB1.2
in this case. This would make it easier for
the UNASSIGN command to figure out if any
other subdevices of the same device are still
assigned and print a warning rather than ‘it’s
safe to remove’. The former case is simpler,
the latter more elegant and more useful (and
covers cases like FDISK \USB1 when a program
needs to access the device to change partition-
ing!). However with the more sophisticated
one the question is if the subnodes need to

be created with DEVICE /C \USB1.1, too, or if
this pseudo-filesystem tree is complex enough
to warrant a facility for dynamically creating
and destroying nodes when devices attach or
vanish (devd / udev like).

Maybe it also makes sense to make the back-
slash special namespace hierarchical? Then
the drive nodes would be specified like this:
\DEV\USBI1. This would allow using it for
other things in the future, too, for example net
shares like \NET\SHAREI.

	1 A Little Rant (to get in the Mood)
	2 The DOS OS Family
	3 Platform and Toolchain Considerations
	4 Storage Devices and Access

